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Abstract 19 

This study assesses sea ice predictability in the pan-Arctic and US Arctic regional (Bering, 20 
Chukchi, and Beaufort) seas with a purpose of understanding regional differences from the pan-21 
Arctic perspective, and how predictability might change under changing climate. Lagged 22 
correlation is derived using existing output from the CESM Large Ensemble (CESM-LE), Pan-23 
Arctic Ice Ocean Modeling and Assimilation System (PIOMAS), and NOAA Coupled Forecast 24 
System Reanalysis (CFSR) models. While qualitatively similar, quantitative differences exist in 25 
Arctic ice area lagged correlation in models with or without data assimilation. On regional 26 
scales, modeled ice area lagged correlations are strongly location- and season-dependent. A 27 
robust feature in the CESM-LE is that the pan-Arctic melt-to-freeze season ice area memory 28 
intensifies whereas the freeze-to-melt season memory weakens as climate warms, but there are 29 
across-region variations in the sea ice predictability changes with changing climate.  30 

1 Introduction 31 

The US Arctic regional seas (Figure 1) are seasonally covered by sea ice, but also there is 32 
large interannual variability in the ice extent, thickness, and timing of ice arrival and retreat. Sea 33 
ice has a profound impact on regional oceanography and marine ecosystems. For example, in the 34 
Eastern Bering Sea, winter sea ice controls the extent of the so-called “cold pool” (bottom water 35 
with temperature < 2°C), and the latter plays an important role in the distributions of several 36 
commercially important fish species [e.g., Wyllie-Echeverria and Wooster, 1998]. The effect of 37 
ice presence and subsequent melting on ocean stratification can persist well into summer 38 
[Stabeno et al., 2012; Brown and Arrigo, 2013], affecting the timing and magnitude of local 39 
primary production and influencing higher trophic levels. Despite its importance, our knowledge 40 
of sea ice predictability in this region is limited. Most sea ice predictability studies focus on pan-41 
Arctic properties [e.g., Blanchard-Wrigglesworth et al., 2011; Tietsche et al., 2014; Wang et al., 42 
2012]. Day et al. [2014] touched on sub-basin scale sea ice predictability and found longer 43 
duration of ice-extent prediction skill in seasonal ice zones than in the central basins. They 44 
hypothesize that the longer time scale of predictability in regional seas is caused by interactions 45 
of sea ice with low-frequency climate variability. How robust this result is and whether it applies 46 
to other ice properties remains to be seen. Additionally, Arctic summer ice cover has experienced 47 
rapid decline in recent decades [Cavalieri and Parkinson, 2012; Comiso and Hall, 2014], and 48 
further ice loss is expected under climate forcing scenarios [e.g., Massonnet et al., 2012]. An 49 
emerging research question therefore is: Will sea ice predictability characteristics change as the 50 
background climate state changes and what mechanisms contribute to such change? Few studies 51 
have assessed the dependence of sea ice predictability on the mean-state. Holland et al. [2011] 52 
found that predictability of summer sea ice is lower in the 2010s compared to 1970s in the 53 
Community Climate System Model version 3 (CCSM3) simulations, and ascribed this change in 54 
predictability to transition to a thinner ice mean state in the model. 55 
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 56 

Figure 1. Study areas. The U.S. Arctic regional seas are composed of the blue, red, and green 57 
boxes denoting the Bering, Chukchi, and Beaufort seas, respectively. The pan-Arctic domain in 58 
this study is defined as north of 55°N. The thick red (blue) contours denote the 1979-2014 59 
climatological mean 15% ice cover in March (September) from satellite sea ice concentration 60 
(SIC) using the NASA team algorithm. The thin red (blue) lines are March (September) 15% ice 61 
cover contours from one CESM-LE member in several years, demonstrating SIC interannual 62 
variability in this region. 63 

Different metrics have been used to assess sea ice predictability. These include lagged 64 
correlation and root mean square error (RMSE). Lagged correlation measures inherent 65 
persistence of a variable or its diagnostic predictability. In comparison, RMSE requires ensemble 66 
integrations and quantifies the ensemble spread, which can be compared to the natural variability 67 
of a control climate, and is called a prognostic predictability metric. In this study, we examine 68 
lagged correlation of sea ice area and thickness in the US Arctic regional seas, in addition to the 69 
pan-Arctic mean states. Sea ice in these regions is influenced by advection and local formation 70 
and melting; these processes in turn are governed by surface forcing and regional oceanography 71 
[e.g., Cheng et al., 2014]. The Bering Sea is composed of a wide, shallow eastern shelf and a 72 
deep ocean basin to the west. The southern Bering Sea shelf is covered by ice 3–4 months of the 73 
year and the northern Bering Sea shelf is ice covered 8–9 months of the year. The mean current 74 
direction in the eastern Bering Sea is northward, with a transport of 0.8 Sv (1 Sv = 106 m3 s-1) 75 
through the Bering Strait into the Chukchi Sea [Woodgate et al., 2005]. The wind direction shifts 76 
seasonally over the Bering Sea, and is predominantly southwestward during winter and 77 
northward in the summer. The Chukchi Sea is composed primarily of a broad shelf with branches 78 
of northward flow influenced by ocean bottom topography, while a deep ocean basin is the 79 
predominant feature of the Beaufort Sea, whose circulation is dominated by the anticyclonic 80 
Beaufort gyre. The Beaufort Sea experiences extensive (> 90%) ice cover every year from 81 
November to approximately June, while the Chukchi Sea is 85% ice covered over the same 82 
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period. Because of their different geographic layout and background ocean circulation, we 83 
consider these regions separately. 84 

2 Methods 85 

We use output from three comprehensive models: the Community Earth System Model 86 
Large Ensemble (CESM-LE), NCEP Climate Forecast System Reanalysis (CFSR), and 87 
University of Washington Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS). 88 
CESM-LE is a set of free-running simulations, while both CFSR and PIOMAS assimilate 89 
satellite sea ice concentration (SIC) data. We begin by comparing lagged correlation of pan-90 
Arctic ice area and thickness and SST anomalies across outputs of these models and with 91 
satellite data to identify potential model biases. We then focus on the regional aspects of ice 92 
predictability in the CESM-LE. We conclude with an examination of how ice predictability may 93 
change under a changing background climate. 94 

CESM is a global earth system model with interactive atmosphere, ocean, sea ice, and 95 
land processes. The CESM-LE is described in detail by Kay et al. [2015]. Briefly, we used a 30-96 
member ensemble of CESM. The integrations were initialized from year 1920 and run to year 97 
2100. The ensemble spread is generated by applying round-off perturbations to the initial 98 
atmospheric states, and so a few years after 1920, the members can be considered to be 99 
independent. Greenhouse gases and aerosol forcing are historical from 1920 to 2005 and follow 100 
the Representative Concentration Pathway 8.5 forcing thereafter. The CESM ocean and sea ice 101 
model spatial resolution is nominally 1° longitude by latitude; in the US Arctic regional seas, the 102 
mean spatial resolution is approximately 60 km. 103 

CFSR is the latest reanalysis product created using the NCEP operational global Coupled 104 
seasonal Forecast System (CFS) for the period of 1979–2009. The CFS ocean component is 105 
based on the Geophysical Fluid Dynamics Laboratory (GFDL) Modular Ocean Model version 4 106 
and the sea ice model is based on the GFDL Sea Ice Simulator. The mean horizontal resolution 107 
of ocean and sea ice models of CFS is 0.5° longitude by latitude. The main difference between 108 
CFSR and its predecessors is that CFSR uses a coupled framework. Hence, SST and sea ice are 109 
no longer prescribed lower boundary conditions in CFSR; instead, they are coupled to an 110 
interactive ocean and sea ice model. A suite of in situ and satellite products for the atmosphere, 111 
ocean and sea ice are assimilated in CFSR [Saha et al., 2010]. 112 

PIOMAS, developed at the University of Washington Polar Science Center [Zhang and 113 
Rothrock, 2003], provides monthly mean sea ice variables from 1979 to near present (the latest 114 
month available from PIOMAS server is December, 2014). PIOMAS assimilates satellite-based 115 
ice concentration to improve ice thickness estimates; in addition, daily high-resolution Reynolds 116 
SST products [Reynolds et al., 2007] are assimilated in the ice-free areas. Atmospheric forcing 117 
from the NCEP/NCAR reanalysis is used to drive the PIOMAS model. For open lateral boundary 118 
located at 45°N, input from the Global Ice-Ocean Modeling and Assimilation System [Lindsay 119 
and Zhang, 2006] was used. The mean horizontal resolution of PIOMAS used in this study is 120 
0.3° latitude by 0.8° longitude. PIOMAS has been extensively validated through comparisons 121 
with observations [Schweiger et al., 2011]. 122 

In addition to the above model products, we also used monthly satellite passive 123 
microwave SIC data [Meier et al., 2013; Peng et al., 2013] from years 1979-2014, and monthly 124 
NOAA Optimum Interpolation (OI) Sea Surface Temperature V2 (provided by the 125 
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NOAA/OAR/ESRL at their web site http://www.esrl.noaa.gov/psd/) from years 1982-2014 in 126 
our analysis. 127 

To obtain ice area, ice thickness, and SST anomalies in CESM-LE, we subtract the 128 
ensemble mean of each month from each ensemble member’s monthly time series. This also 129 
effectively removes the long-term trend and mean seasonal cycle. For PIOMAS, CFSR, and 130 
satellite data, we remove the mean seasonal cycle and monthly linear trend at each grid point to 131 
obtain monthly anomalies. Corresponding anomalies at each grid box (including ice-free grid 132 
points) are averaged over the pan-Arctic domain (north of 55°N), the Bering (55–66°N, 170°E–133 
160°W), Chukchi (66–75°N, 180°E–155°W), and Beaufort (70–77°N, 155–125°W) seas (Figure 134 
1), respectively, to get domain mean anomalies. Ice area is calculated as a product of ice 135 
concentration (percentage) of each grid box and the grid box size, then summed over the 136 
respective domains to obtain regional ice area anomalies. Finally, monthly and domain-specific 137 
anomalies are used to compute correlation, with lags up to 15 months. 138 

3 Results 139 

3.1 Pan-Arctic results across the datasets 140 

Before focusing on the CESM-LE for regional and climate change analyses, we first 141 
compare its pan-Arctic performance with the other models and with observations. The ice area 142 
monthly lagged correlation in all datasets (Figure 2, upper row) has an initial decline with 143 
increased lag, which then is followed by an increase in correlation at lags ranging from a few 144 
months to a year. Similar results were found in an earlier version of CESM [Blanchard-145 
Wrigglesworth et al., 2011] and other global climate models (GCMs) [e.g., Chevallier and Salas-146 
Mélia, 2012; Day et al., 2014]. The increased correlation at a later time is associated with 147 
memory reemergence, and is further categorized into two limbs [Blanchard-Wrigglesworth et al., 148 
2011]: the “summer limb” where the increased correlation is between spring/summer and 149 
fall/early winter (also called melt-to-freeze season memory) (Figure 2, upper row, March, May 150 
and July panels); and the “winter limb” where the increased correlation is between fall/early 151 
winter and the next spring/summer (also called freeze-to-melt season memory) (Figure 2, upper 152 
row, January, September, and November panels). PIOMAS, CFSR, the CESM-LE ensemble 153 
members, and satellite data all exhibit similar ice area memory reemergence, but there are 154 
quantitative differences between the products, particularly in lagged correlations initialized in the 155 
spring, summer and fall months. For example, during spring, the ensemble mean of CESM-LE 156 
ice area lagged correlation has a slight shift in the timing of the correlation maximum at re-157 
emergence relative to the other products (Figure 2, top row, May panel): local maximum of the 158 
black line occurs at lag 7–8 months, while the other products have a local maximum around lag 159 
5. This timing shift likely results from delayed spring melt in CESM relative to observations 160 
(Cheng et al., 2014). Moreover, the result from satellite SIC tends to be at the lower end of the 161 
CESM ensemble spread, suggesting that CESM-LE overestimates ice area anomaly persistence 162 
to an extent, and similar overestimation is also found in other GCMs [Day et al., 2014]. 163 
Overestimation by CESM-LE in pan-Arctic mean SST lagged correlation is also present in some 164 
parts of a year and here again, quantitative differences exist between PIOMAS, CFSR, and 165 
observed SST, even though both CFSR and PIOMAS assimilate SST observation (Figure 2, 166 
middle row). Despite their differences, across all data sets, SST lagged correlation has longer 167 
decorrelation time scales than that of ice area, and this SST anomaly persistence provides the 168 



Confidential manuscript submitted to Geophysical Research Letters 

 

mechanism for ice area summer limb memory [Blanchard-Wrigglesworth et al., 2011; Bushuk et 169 
al., 2014].  170 

 171 

Figure 2. Monthly lagged correlation for pan-Arctic ice area (top row), SST (middle row), and 172 
ice thickness anomalies (bottom row) from the CESM-LE 1979-2005 (2005 is the end of CESM 173 
historical forcing) (green and black lines), PIOMAS 1979-2014 (blue lines), CFSR 1979-2009 174 
(red lines), and from satellite ice area anomalies using the NASA team algorithm (1979-2014) 175 
and NOAA OI SSTv2 (1982-2014) (purple lines). The initial month that is correlated with all 176 
other months with lag is marked on the panels. Dashed lines denote the 95% confidence level for 177 
statistical significance using one-sided Student’s t-test. Note there are no long-term (1979–178 
present) ice thickness satellite data. 179 

Similarly, across-model differences exist in the pan-Arctic mean thickness lagged 180 
correlation (Figure 2, bottom row). PIOMAS and the CESM-LE ensemble mean have a similar 181 
de-correlation rate through all lags regardless of the initialization month, but the thickness initial 182 
de-correlation rate in CFSR is much faster than either CESM-LE or PIOMAS, and the overall 183 
shape of ice thickness lagged correlation in CFSR is different from the other two models. Since 184 
no long-term ice thickness observation is available for assimilation, modeled ice thickness is 185 
subjected to each model’s ice physics and parameter values, and the Arctic mean ice thickness 186 
monthly climatology differs from one model to another (Figure S1 in supporting material). 187 
Difference in model physics, use of data assimilation or lack of it, different air-sea interaction 188 
between a coupled model (such as the CESM and CFSR) and an ice-ocean model forced by 189 
prescribed atmospheric forcing (such as the PIOMAS), and particularly model physics, affect 190 
modeled mean ice thickness and its variability. PIOMAS and CESM-LE have much longer e-191 
folding time scales of Arctic mean ice thickness anomalies than of ice area anomalies: the lagged 192 
correlation remains statistically significant (at the 95% confidence level) until lag 20–24 months 193 



Confidential manuscript submitted to Geophysical Research Letters 

 

(not shown). The long decorrelation time scale of the pan-Arctic mean ice thickness provides a 194 
mechanism for ice area winter limb memory [Blanchard-Wrigglesworth et al., 2011]. 195 

3.2 Pan-Arctic and regional results in the CESM-LE in current climate 196 

Because the lagged correlation patterns of pan-Arctic ice area and thickness anomalies 197 
are consistent between the CESM-LE and PIOMAS but only CESM-LE provides a large 198 
ensemble and future scenarios, we focus on CESM-LE for regional predictability estimates. For 199 
ice area, US Arctic regional results have similar characteristics to pan-Arctic results (Figure 3, 200 
upper row). This may not seem surprising, as one expects that pan-Arctic ice area anomalies 201 
stem primarily from those along the ice edge or in the regional seas (while the central Arctic 202 
basin is fully ice covered with little change). Despite this, each region is influenced by air-sea 203 
interaction, ocean circulation, and seasonal migration of the sea ice edge particular to that region, 204 
at times causing the regional character to be significantly different from the pan-Arctic mean. 205 
For example, during the ice advance season (January to March/April), both the Beaufort and 206 
Chukchi seas have significantly lower ice area anomaly persistence than the pan-Arctic area 207 
anomalies (Figure 3, upper row, left two panels). This suggests that the latter’s persistence 208 
originates from other regions of the Arctic. In March, multi-year mean (averaged over 1979-209 
2005) Bering Sea ice area anomalies vary between 30-90% of the Arctic ice area anomalies 210 
among the CESM ensemble members; whereas the Chukchi and Beaufort Seas contribute 211 
between 1-8% of the Arctic ice area anomalies among the ensemble members. In comparison, 212 
during sea ice retreat (Figure 3, upper row, May–September panels), lagged area correlation in 213 
the US Arctic regional seas are comparable to that of the pan-Arctic average, suggesting that 214 
these seas contribute significantly to the pan-Arctic average. This again is consistent with that in 215 
September, multi-year mean ice area anomalies in the Chukchi and Beaufort Seas are 10-50% of 216 
the Arctic ice area anomalies, varying among the CESM ensemble members. 217 

 218 

Figure 3. Monthly lagged correlation of ice area (top row), SST (middle row), and ice thickness 219 
anomalies (bottom row) in CESM-LE ensemble mean over different regions: pan-Arctic (black 220 
lines), Bering Sea (blue lines), Chukchi Sea (red lines), and Beaufort Sea (green lines). The 221 
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initial month that is correlated with all other months with lag is marked on the panels. Dashed 222 
lines denote the 95% confidence level for statistical significance using one-sided Student’s t-test. 223 
We used all non-zero data in this calculation without excluding near-constant ice cover months 224 
(for example, January–April of the Beaufort Sea). 225 

Regional SST lagged correlation shows considerable spatial and temporal variation. 226 
Regions under substantial ice cover and thus insulated from atmospheric forcing have relatively 227 
constant SST close to the freezing point, small SST variations (~0.01deg order of magnitude) in 228 
these regions and time can be considered as random noise (Figure 3, middle row, January and 229 
March panels, Chukchi and Beaufort curve). Aside from these regions and time, regional SST 230 
anomalies have significant correlation with lags up to 15 months and later, and the pan-Arctic 231 
and Bering Sea SSTs show reemergence associated with winter mixed layer deepening, a 232 
mechanism that has also been documented in the observations [e.g., Alexander et al., 1999]. The 233 
Bering Sea SST anomaly has weaker lagged correlation than the pan-Arctic mean SST in late fall 234 
to early winter, but is comparable to the pan-Arctic mean state in spring and summer (Figure 3, 235 
middle row, comparing the black and blue lines). Ice thickness anomalies averaged over the US 236 
Arctic regional seas have weaker persistence and a shorter e-folding time scale than the pan-237 
Arctic mean (Figure 3, bottom row). Negative thermodynamic feedback between ice growth and 238 
ice thickness causes thinner sea ice to vary more on shorter time scales [e.g., Bitz and Roe, 239 
2004]. Such feedbacks, in addition to advective processes, diminish ice thickness anomaly 240 
persistence in these regions [Blanchard-Wrigglesworth and Bitz, 2014]. By this metric, the 241 
Beaufort and Chukchi seas have similar ice thickness e-folding time scales, and both are longer 242 
than that of the Bering Sea. This is likely because the Bering Sea on average has thinner sea ice 243 
than the other two regions. 244 

3.3 Influence of changing climate 245 

As mentioned before, the pan-Arctic ice area anomaly possesses two types of memory re-246 
emergence: one is the melt-to-freeze season/summer limb memory associated with SST 247 
anomalies created at the retreating ice edge and its persistence, and the other is the freeze-to-melt 248 
season/winter limb memory enabled by long e-folding time scales of ice thickness variations 249 
(Figure 3). Figure 4 illustrates both types of memory in the CESM-LE, for the pan-Arctic mean 250 
(left column) and Chukchi Sea ice area anomalies (right column). Lagged correlation of ice area 251 
anomalies is calculated for each sequential 35-year period beginning in 1920 and ending in 2080 252 
(e.g., 1920-1954, 1921-1955, … 2046-2080) across the CESM-LE ensemble members. Results 253 
suggest that the summer limb memory of the pan-Arctic ice area anomalies is stronger and 254 
occurs later in a warmer climate (area denoted by red dashed lines in Figure 4a, left columns; and 255 
Figure 4b, left column, comparing areas centered around lag 3-4 months across the panels) – the 256 
elevated correlation with July ice area anomalies occurs in September, October, and November, 257 
respectively, in the 1920–1954, 2006–2040, and 2041–2075 climates. As the climate warms, 258 
mean Arctic Ocean stratification increases (Figure S2 in supporting material), along with 259 
increases in open water area and duration. These changes lead to more persistent upper ocean 260 
property anomalies in warmer climate, which contribute to stronger ice area summer limb 261 
memory because the summer limb memory depends on SST and upper ocean property changes. 262 
In addition, because of the stronger future decline in autumn SIC relative to early summer SIC, a 263 
robust feature of Arctic amplification seen in CESM and other GCMs, the present-day co-264 
location of July and October SIC anomalies that is crucial for the timing of summer limb 265 
memory reemergence [Blanchard-Wrigglesworth et al., 2011] evolves into a future July–266 
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November co-location of SIC anomalies (supporting material, Figure S3). However, there are 267 
across-region variations in sea ice predictability change with changing climate. For example, ice 268 
area anomalies in the Chukchi Sea have similar delayed summer-to-fall reemergence as the pan-269 
Arctic mean state but slight weakening in the lagged correlation coefficients in the second half of 270 
21st century relative to earlier time based on the ensemble mean result (Figure 4a, right column), 271 
but large variations exist across the ensemble members (Figure 4b, right column). Beaufort Sea 272 
ensemble mean result shows a similar delay of summer ice area memory reemergence in the 273 
future as in the pan-Arctic mean state and Chukchi Sea, but there is less weakening of the 274 
correlation coefficients with time compared to the Chukchi Sea (Figure S4, in supporting 275 
material). Concurrently, the winter limb of pan-Arctic ice area memory weakens as climate 276 
warms (Figure 4a, areas denoted by blue dashed lines; and Figure 4b, comparing areas centered 277 
around lag 13-14 months across the panels), likely due to thinning of Arctic mean ice thickness 278 
(supporting material, Figure S1), but again, across-region variations and large inter-member 279 
variation across the ensemble persist (Figure 4, Figure S4 in supporting material). Ice area winter 280 
limb memory is associated with ice thickness anomaly persistence, and ice thickness variability 281 
is strongly heterogeneous in space, hence the across-region differences in winter limb memory 282 
change. These results stress spatial heterogeneity in Arctic sea ice changes with changing 283 
climate. For the pan-Arctic mean state, the effect of warming on summer limb memory is 284 
obvious by the first half of 21st century (e.g., 2006–2040), whereas warming doesn’t appear to 285 
significantly alter the winter limb memory until the second half of 21st century (e.g., 2041-286 
2075). 287 

 288 
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Figure 4. (a) Monthly lagged correlation of pan-Arctic (left column) and Chukchi Sea (right 289 
column) ice area anomalies, from the CESM-LE ensemble mean. Calculation is done for all 290 
sequential 35-year periods beginning in 1920 and ending in 2080, and the y-axis corresponds to 291 
the center of each of the 35-year periods. X-axis is lag in months, with lag-0 corresponding to 292 
July. Months corresponding to lag-0, lag-5, lag-10, and lag-15 are marked on the top of each 293 
panel. Horizontal dashed lines correspond to the middle year of the three time periods shown in 294 
(b). (b) As in (a) but showing the ensemble spread of CESM-LE for three periods: 1920–1954 295 
(top row), representing the 20th century mean climate before significant warming; 2006–2040 296 
(middle row) and 2041–2075 (bottom row), representing the 21st century warmed climates with 297 
varying degrees. The red dashed lines in a) highlight the summer limb memory change and 298 
timing delay as climate warms, while the blue dashed lines highlight concurrent changes in the 299 
ice area memory from one summer to the next. 300 

4 Discussion and Conclusions 301 

We investigate an aspect of sea ice predictability over the pan-Arctic domain and in the 302 
US Arctic regional seas using lagged correlation, a diagnostic predictability metric. We analyzed 303 
output from the CESM-LE, PIOMAS, and CFSR models and satellite microwave SIC and SST 304 
observations. These models are either coupled earth system models (one with data assimilation 305 
and one without) or stand-alone ice-ocean model assimilating ocean and atmosphere observation. 306 
We identify common as well as diverging model behavior to better understand inherent sea ice 307 
predictability limits. All three models’ output, as well as the satellite SIC, exhibits pan-Arctic ice 308 
area memory reemergence even though the exact magnitudes of lagged correlation differ across 309 
the models, as well as between each of the models and satellite observation (Figure 2). 310 
Therefore, uncertainties remain in the Arctic sea ice modeling, even with the help of data 311 
assimilation. Despite such uncertainties, monthly ice thickness lagged correlation is similar 312 
between CESM-LE and PIOMAS, while CFSR has a much shorter ice thickness e-folding time 313 
scale than both CESM-LE and PIOMAS for all seasons. 314 

Lagged correlation of ice property and SST in the regional seas vary strongly with 315 
location and season (Figure 3). For example, the Beaufort and Chukchi seas have much weaker 316 
ice area anomaly persistence during the winter season (January-March/April) than either the 317 
Bering Sea or the pan-Arctic mean anomaly (Figure 3, upper row, January and March panels). 318 
Although the Beaufort and Chukchi seas are nearly completely ice covered during the winter 319 
months, there is some ice area variability in these regions due to opening and closing of coastal 320 
polynyas [Ladd et al., 2016], and these wind-driven processes have little memory or persistence 321 
from one month to the next.  322 

Compared to pan-Arctic ice area anomalies, the pan-Arctic ice thickness and SST 323 
anomalies are much more persistent, but such persistence decreases on regional scales (Figure 3). 324 
Ice thickness variability is governed by thermodynamic growth/melt and dynamic transport as 325 
well as ridging processes. Regional ice thickness gains or losses that are driven by dynamics (ice 326 
of different thickness being advected from one region into another) cancel out for the pan-Arctic 327 
average, allowing the latter to have stronger persistence than most sub-regions. Likewise, 328 
advection could diminish SST anomaly persistence over a particular region [e.g., Serreze et al., 329 
2016], but has weak effect on pan-Arctic mean SST anomalies. Taken together, these results 330 
suggest that predictability of ice area in the US Arctic regional seas is generally weaker than that 331 
of the pan-Arctic mean state. 332 
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As climate warms, Arctic ice thins and open water duration and coverage increases, the 333 
pan-Arctic ice area summer limb memory increases but the winter limb memory decreases; in 334 
addition, the summer-to-fall memory reemergence occurs later in warmer climates (Figure 4), 335 
consistent with delayed fall freeze-up. However, there are across-region variations in sea ice 336 
predictability changes with changing climate. These results invite questions such as: How much 337 
warming and thinning is necessary before ice predictability in the Arctic is affected? What 338 
regions of the Arctic are most sensitive to climate state changes? With more observational data 339 
becoming available and climate and sea ice models continuing to improve, we can begin to 340 
address these questions. 341 
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Figure S1. Mean Arctic (north of 55°N) ice thickness monthly climatology based on 
years 1979-2005, from CESM-LE, CFSR, and PIOMAS (top), and from CESM-LE over 
different time periods (bottom). 
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Figure S2. Time series of mixed layer depth (MLD) in the Arctic (averaged north of 
55°N) from CESM-LE ensemble mean, showing monthly MLD smoothed by a 11-point 
running box (top), March (middle) and September (bottom) of each year. Decrease of 
MLD with time suggests increase in the Arctic upper ocean stratification.  
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Figure S3. Mean Arctic (north of 55°N) sea ice concentration (SIC) monthly climatology 
based on years 1979-2005, from CESM-LE, CFSR, PIOMAS, and satellite data (showing 
both the NASA team and boot strap algorithms)  (top) and from CESM-LE over different 
time periods (bottom). Dashed arrows in the bottom panel highlight the months with 
similar SIC values (therefore these months have similarly located ice edge), and how 
such seasonality changes from present-day July-to-October co-location to future July-to-
November co-location. 
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Figure S4. As in Figure S4 but for the Beaufort Sea (left columns) and Bering Sea (right 
columns). White areas in the right columns indicate that the Bering Sea is ice-free in 
those months. 
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